Determine the solubility and solubility product of sparingly soluble, AgCl conductometrically.

Requirements: 10 mL AgNO₃ (N/10); 8mL KCl solution (N/10); Conductivity cell; Conductometer, beaker, Stirrer.

Theory: Solution of $AgNO_3$ and KCl when mixed, they formed AgCl salt, which is insoluble in water and get precipitated. AgCl is in equilibrium with its ions in aqueous solution and the solubility product K_{sp} is expressed by reference to the equilibrium.

$$AgCl \rightleftharpoons Ag^{+}(aq.) + Cl^{-}(aq.)$$

If 'S' be the solubility in g.eq/L of a given salt and K is the specific conductance of saturated solution, the equivalent conductance (Λ_{eq}) of the solution is given by:

$$\Lambda_{eq} = \frac{1000 K}{S}$$
and,
$$\Lambda_{eq} = \Lambda_{Ag^+}^{\circ} + \Lambda_{Cl^-}^{\circ}$$

In general, the solution will be sufficiently diluted for the equivalent conductance to be similar with the value of infinite dilution (Λ_{eq}°) which can be obtained from the ionic conductance of the constituent ions.

It follows that since $' \wedge_{eq} '$ is known and K for the saturated solution can be determined (conductometrically) experimentally, it is possible to calculate the solubility 'S' by means of the above equation.

Procedure:

- 1) 10 mL of $AgNO_3$ (N/10) solution was taken in a beaker. 8 ml of KCl (N/10) solution was added in it to get the solid precipitate of AgCl.
- 2) The precipitate was washed with hot distilled water many times to remove excess Cl- ions, which may be accumulated on AgCl.
- 3) The precipitate was then equally divided into 2 parts and then mixed with 100 ml distilled water (in 150 mL beakers).
- 4) The conductance of distilled water was taken first in conductivity cell. Then the conductance of prepared two AgCl solutions were taken while stirring the solution for 1 hour.

Observation: *(values are given as an example)*

Cell constant (*check it*) = 0.98 cm^{-1} Conductance of distilled water: μ S Conductance of saturated aq. AgCl solution in beaker 1: μ S Conductance of saturated aq. AgCl solution in beaker 2: μ S

Calculations: (values are given as an example)

After correcting the conductance for water: Conductance of saturated aq. AgCl solution in beaker 1: μS = Conductance of saturated aq. AgCl solution in beaker 2: μS = _ Average Conductance of the saturated aq. AgCl solution: = μS According to Kohlrausch law: Molar conductance at infinite dilution, Λ° (AgCl) = Λ° (Ag⁺) + Λ° (Cl⁻) = 61.92 + 76.34 = 138.26 S.cm² mol⁻¹ at 25 °C. Specific conductance (K) for AgCl solution=conductance x Cell constant x 0.98 = Scm⁻¹. If the solubility of AgCl is denoted by S, then $S = (K \ x \ 1000) / \Lambda^0$ x 1000) S cm⁻¹/ 138.26 S. cm².mol⁻¹ = = (mol.cm-³ For, solubility product, $K_{sp} = [Ag^+] \times [Cl^-] = S \times S = S^2 = ($)2= mol².cm-⁶

Results: The solubility and solubility product for AgCl in water were found to be $mol.cm^{-3}$ and $mol^2.cm^{-6}$ at laboratory temperature (X °C).