Determine the rate constant of the saponification of Ethylacetate by NaOH conductometrically.

A) Requirements:

Ethylacetate solution (N/25), NaOH (N/25), Acetic acid (N/10), Oxalic acid, Conductometer and Conductivity cell, Burette, Pipette, Conical flask, beakers.

B) Theory:

In the presence of base, NaOH, the hydrolysis of CH_3COOEt ester takes place to produce H_3CCOO -Na⁺ and EtOH as follows:

 $H_3CCOOEt + NaOH \rightarrow H_3CCOO^-Na^+ + EtOH$

The reaction follows the 2nd order kinetics. The rate of the reaction can given by:

Rate = $-\frac{d}{dt} [Ester] = k [ester][OH-]$ where k = Second order rate constant in unit of mol⁻¹LS⁻¹.

The integrated expression of 2nd order rate equation can be given as

$$k = \frac{1}{t} \frac{x}{a (a - x)} \dots \dots (1)$$

where, a = initial concentration of reactant, x= concentration of product at time, t. (a-x) = concentration of the remaining reactant at time t.

In the above reaction hydroxide ion progressively consumed by acetate ion. Since the ionic mobility of OH⁻ ($\lambda_0 = 198.5 \text{ Ohm}^{-1}\text{cm}^2\text{mol}^{-1}$) is much higher than CH₃COO⁻ ion ($\lambda_0 = 40.9 \text{ Ohm}^{-1}\text{cm}^2\text{mol}^{-1}$); the conductance of the reaction mixture progressively decreased with the time t. The conductance measurement of the reaction mixture thus provides a means of estimation of the amounts of these ions present and hence allow us to monitor the progress of reaction with time.

If the conductance of the reaction mixture are C_o , $C_t \& C_\infty$ at the beginning (t = 0), any intermediate time (t = t) and at completion of reaction (t = ∞) respectively (where, $C_o > C_t > C_\infty$), then,

$$\begin{array}{l} a \propto (C_0 - C_{\infty}), \\ x \propto (C_0 - C_t) \\ \text{hence, (a-x)} \propto (C_t - C_{\infty}). \end{array}$$

Thus, the equation (1) can be rewritten as:

$$\frac{(c_0-c_t)}{(c_t-c_\infty)}=k\ a\ t$$

Plot of $(C_o - C_t)/(C_t - C_\infty)$ vs. t (time) gives a straight line passing through origin with positive slope of 'k x a'. Since, the initial concentration of the ester is known, k can be obtained from the slope. While, C_t is determined from the measurements of conductance at different time interval, C_∞ can be determined indirectly by measuring the conductance of a mixture of solution having same concentration of NaOH and

acetic acid. For, determination of C_0 only NaOH solution of same concentration need to be measured.

C) Procedure:

- 1. Preparation of exact N/10 Oxalic acid standard solution.
- 2. Standardization of ~N/10 NaOH (given) with prepared oxalic acid solution.
- 3. Preparation of 100 mL N/25 NaOH (exact).
- 4. 50 ml (N/25) exact ethyl acetate was prepared.
- 5. Measure the conductance of 50 mL N/25 NaOH which is considered as C_0 .
- 6. Prepare the reaction mixture by adding 50mL of N/25 NaOH in 50 mL of N/25 ethyl acetate.
- 7. Start taking conductance reading using conductivity cell connected to conductivity meter. The conductivity meter should be calibrated before start of the experiment.
- 8. The conductance reading of the reaction mixture in different time should be noted in **Table 2**. This reading is denoted as C_t value.
- 9. After about one hour (when the variation of conductance will be very small), reaction mixture is heated (~80 °C for ~30 mints), then cooled and conductance reading is taken in a same way. This reading is marked as C_{α} . [Note: Alternatively, the conductance of solution containing 50 ml N/25 NaOH and 50 ml N/25 AcOH can be treated as C_{α}].

D) Observation and Calculation:

Laboratory temperature: 30.5 °C Weight of Oxalic acid taken = 0.635 g Strength of the prepared 100 mL oxalic acid solution=

(0.635/63.5)x (1000/100)= 0.1N

1. Table 1: Standardization of NaOH solution by titrating against standard oxalic acid solution.

S.No.	Volume of	Volume of	Concordant	
	oxalic acid	NaOH required	value/ ml	
	taken / ml	/ ml		
1.	10			
2.				
3.				

Calculation $V_1N_1 = V_2N_2$; $N_2 =$

2. Preparation of exact 100 ml (N/25) NaOH solution: Add mL of distilled water in of 0.101 N NaOH.

- **3**. Preparation of exact (N/25) ethyl acetate (50 ml) solution.
- 4. Table 2: Observation table for conductance measurement:

 $\begin{array}{ll} C_0 = & mS \\ C_\alpha = & ms \end{array}$

 $a = C_0 - C_\alpha = mS$

S.No.	Time /min	Conductance / mS, (Ct)	(C _o -C _t) / mS	$(C_t-C_\infty) / mS$	(C_o-C_t) / (C_t-C_∞)	$k = \frac{C_o - C_t}{at(C_t - C_{\infty})}$
1.						
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						
11.						
12.						

[No need of reporting k_{avg} from Table 4]

Determine the slope of the straight line in Graph 1: Slope = 0 = k a k = slope/a= mol⁻¹Lmin⁻¹.

E) Result: The rate constant (k) for base (NaOH) catalysed hydrolysis of ethyl acetate at laboratory temperature (30.5 °C) was found to be mol⁻¹Lmin⁻¹.

Graph 1: The variation of conductance with time during the progress of reaction of ethylacetate hydrolysis in base medium:

For Example, a plot (Origin programme is used to plot).

